High-quality copper oxide microcrystals for quantum photonics

High-quality copper oxide microcrystals for quantum photonics

Copper oxidation for most people means tarnished surfaces and corroded electronics. But the compound Cu2O – or cuprous oxide – is a promising material for quantum photonics, optoelectronics and renewable energy technologies. Now a team of researchers has found a way to synthesize high-quality copper oxide microcrystals.

Researchers from KTH Royal Institute of Technology report that they have developed a scalable production method for cuprous oxide (Cu2O) micrometer-sized crystals. Also involved in the study were the Institute of Solid State Physics, Graz University of Technology, Austria and Laboratoire d’Optique Appliquée Ecole Polytechnique, Palaiseau, France.

“The unique properties of Cu2O can lead to new schemes for quantum information processing with light in the solid state, which are difficult to realize with other materials,” says Stephan Steinhauer, researcher in KTH’s Quantum Nano Photonics group.

“This work paves the way for the widespread use of Cu2O in optoelectronics and for the development of novel device technologies.”

Read more.

Source: “Method can synthesize high quality copper oxide crystals for quantum photonics”, David Callahan, KTH Royal Institute of Technology