Excellent performance in ultra-scale FETs with 2D-channel

Excellent performance in ultra-scale FETs with 2D-channel

At this year’s IEEE International Electron Devices Meeting (Dec 7-11 2019), imec, a world-leading research and innovation hub in nanoelectronics and digital technologies, reports an in-depth study of scaled transistors with MoS2 and demonstrates best device performance to date for such materials.

MoS2 is a 2D material, meaning that it can be grown in stable form with nearly atomic thickness and atomic precision. Imec synthesized the material down to monolayer (0.6nm thickness) and fabricated devices with scaled contact and channel length, as small as 13nm and 30nm respectively. These very scaled dimensions, combined with scaled gate oxide thickness and high K dielectric, have enabled the demonstration of some of the best device performances so far. Most importantly, these transistors enable a comprehensive study of fundamental device properties and calibration of TCAD models. The calibrated TCAD model is used to propose a realistic path for performance improvement. The results presented here confirm the potential of 2D-materials for extreme transistor scaling – benefiting both high-performance logic and memory applications.

Theoretical studies recommend 2D materials as the perfect channel material for extreme transistor scaling as only little short channel effects are expected compared to the current Si-based devices. Hints of this potential have already been published with one-of-a-kind transistors built on natural flakes of 2D materials.

Read more.

Source: “Imec shows excellent performance in ultra-scale FETs with 2D-material channel”, Hanne Degans, Imec