Trace of new form of superfluidity

Trace of new form of superfluidity

Recent observations of the internal structure of the rare isotope ruthenium-88 shed new light on the internal structure of atomic nuclei, a breakthrough which could also lead to further insights into how some chemical elements in nature and their isotopes are formed.

Led byBo Cederwall, Professor of Experimental Nuclear Physics at KTH Royal Institute of Technology, an international research team identified new rotational states in the extremely neutron-deficient, deformed, atomic nucleus88Ru. The results suggest that the structure of this exotic nuclear system is heavily influenced by the presence of strongly-coupled neutron-proton pairs.

“Such a structure is fundamentally different from the normal conditions observed in atomic nuclei, where neutrons and protons interact in pairs in separate systems, forming a near-superfluid state,” Cederwall says.

The results may also suggest alternative explanations for how the production of different chemical elements, and in particular their most neutron-poor isotopes, proceeds in the nucleosynthesis reactions in certain stellar environments such as neutron star-red giant binaries, he says.

Read more.

Source: “Exotic atomic nuclei reveal traces of new form of superfluidity”, David Callahan, KTH Royal Institute of Technology